首页> 外文OA文献 >Advancement toward coupling of the VAMPER permafrost model within the earth system model iLOVECLIM (version 1.0): description and validation
【2h】

Advancement toward coupling of the VAMPER permafrost model within the earth system model iLOVECLIM (version 1.0): description and validation

机译:地球系统模型iLOVECLIM(1.0版)中VA​​MPER多年冻土模型耦合的进展:描述和验证

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The VU Amsterdam Permafrost (VAMPER) permafrost model has been enhanced with snow thickness and active layer calculations in preparation for coupling within the ILOVECLIM Earth system model of intermediate complexity (EMIC). In addition, maps of basal heat flux and lithology were developed within ECBilt, the atmosphere component of ILOVECLIM, so that VAMPER may use spatially varying parameters of geothermal heat flux and porosity values. The enhanced VAMPER model is validated by comparing the simulated modern-day extent of permafrost thickness with observations. To perform the simulations, the VAMPER model is forced by ILOVECLIM land surface temperatures. Results show that the simulation which did not include the snow cover option overestimated the present permafrost extent. However, when the snow component is included, the simulated permafrost extent is reduced too much. In analyzing simulated permafrost depths, it was found that most of the modeled thickness values and subsurface temperatures fall within a reasonable range of the corresponding observed values. Discrepancies between simulated and observed permafrost depth distribution are due to lack of captured effects from features such as topography and organic soil layers. In addition, some discrepancy is also due to disequilibrium with the current climate, meaning that some observed permafrost is a result of colder states and therefore cannot be reproduced accurately with constant ILOVECLIM preindustrial forcings.
机译:VU阿姆斯特丹多年冻土层(VAMPER)多年冻土层模型已通过积雪厚度和活动层计算得到增强,以准备在ILOVECLIM地球系统中度复杂度(EMIC)模型中进行耦合。此外,在ILoveclim的大气成分ECBilt内开发了基础热通量和岩性图,因此VAMPER可以使用地热热通量和孔隙率值的空间变化参数。通过比较模拟的多年冻土厚度和观测值,验证了增强的VAMPER模型的有效性。为了执行模拟,VAMPER模型是由ILOVECLIM地表温度推动的。结果表明,不包括积雪选项的模拟高估了当前的多年冻土程度。但是,当包含雪分量时,模拟的永久冻土程度会降低太多。在分析模拟的多年冻土深度时,发现大多数模拟厚度值和地下温度都在相应观测值的合理范围内。模拟的和观测的多年冻土深度分布之间的差异是由于缺乏地形和有机土壤层等特征引起的捕获效应所致。此外,一些差异还归因于与当前气候的不平衡,这意味着观测到的多年冻土是寒冷状态的结果,因此在恒定的ILOVECLIM工业化前强迫下无法准确再现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号